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Abstract— Multi-modal transportation recommendation plays
an important role in navigation applications. It aims to recom-
mend a travel plan with various transport modes, such as bus,
metro, taxi, bicycle, and a hybrid. Analysis of real-world large-
scale navigation data shows that the correlation between the
data can be represented by a graph containing different types
of nodes and edges. As an emerging technology, graph neural
networks (GNN) have shown powerful capabilities in representing
graph data. However, existing solutions based on GNN only
consider converting heterogeneous graph data into homogeneous
graph data, ignoring the effects of different types of nodes and
edges. In addition, those methods usually face the over-smoothing
problem, which reduces the accuracy of recommendation. To this
end, we propose a multi-modal Transportation recommenda-
tion algorithm with Heterogeneous graph Attention Networks
(THAN) based on carefully constructed heterogeneous graphs.
We first design a novel graph embedding method to represent
the correlation between the origin and the destination, as well as
the correlation between origin-destination (OD) pairs and users.
Next, a heterogeneous graph from large-scale data is built to
describe the relationship between users, OD pairs, and transport
modes. Then, we design a hierarchical attention mechanism
with residual blocks to generate node embedding in terms of
homogeneity and heterogeneity. Finally, a fusion neural layer is
designed to fuse embeddings from different views and predict
the proper transport mode for users. Extensive experimental
results on a large-scale real-world dataset demonstrate that the
performance of THAN outperforms five baselines.
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system, graph neural network, attention, heterogeneous.
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I. INTRODUCTION

AS THE living standards improve significantly, traveling
has become a necessity on a daily basis for most people.

Navigation application plays an important role in traveling,
and thus it has penetrated deeply into people’s daily life.
Transportation recommendation is one of the core components
of many navigation applications, and the research on it attracts
the attention of academia [1], [2], [3], [4], [5], [6], [7]
and industry [8], [9], [10], [11], [12], e.g., Google Map,1

Amap,2 Baidu Map,3 and Didi4 are trying to design and
develop safer, more coordinated, and more efficient intelligent
transportation systems to promote social development and
meet the diversified needs of citizens. People usually choose
to use transport modes such as walking, biking, driving, and
public transportation to complete the trip from the origin (O)
to the destination (D). In fact, the navigation application
will only make a route plan for the user considering one
of the above transport modes, i.e., uni-modal transportation
recommendation. For trips with a given transport mode, it is
quite easy to plan the travel path. However, there is still a lack
of research to systematically solve the problem of choosing
the most suitable transport mode for users from multiple
transport modes, which is called multi-modal transportation
recommendation.

Uni-modal transportation recommendation that only consid-
ers one transport mode, e.g., bicycle, bus, taxi, or subway,
which has been widely studied [10], [13], [14]. In contrast,
research on multi-modal transportation recommendation that
considers both uni-modal (e.g., bicycle, bus, taxi, subway) and
multi-modal (e.g., taxi-bus, taxi-subway) in the road network
is still in the preliminary exploration stage [3], [8], [9],
[11], [15], [16]. The uni-modal transportation recommen-
dation methods cannot be directly applied to multi-modal
transportation recommendation. To this end, Liu et al. [8]
proposed Trans2vec, which is a multi-modal transportation
recommendation method based on graph embedding. Based on
the Trans2vec, a multi-modal transportation recommendation
system was formally established and deployed on Baidu Maps.

1https://www.google.com/maps
2https://amap.com/
3https://map.baidu.com/
4https://www.didiglobal.com/
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From 2019 to 2020, the multi-modal transportation recommen-
dation system provided hundreds of millions of users with
more personalized and intelligent navigation services. While
meeting the diverse needs of users, it can also reduce travel
time, balance traffic flow, and reduce traffic congestion, thus
greatly promoting the development of smart transportation
systems [8], [9].

Although the multi-modal transportation recommendation
system has been deployed for commercial use, the multi-modal
transportation recommendation technology still faces many
problems and challenges. The first challenge is the lack of a
real multi-modal transportation recommendation open dataset
as a test benchmark. As far as we know, real data is essential
for deep learning (e.g., graph neural networks). The data
related to the transportation recommendation field is either
non-open data or a single modal data (i.e., it contains only
one transport mode) [10], [14], which is difficult to support
the research of multi-modal transportation recommendation.
Therefore, it is necessary to collect and open a real multi-
modal transportation dataset containing multiple transport
modes. The second challenge is the heterogeneity of the trans-
portation graph. The transportation graph is heterogeneous in
nature, which contains many types of nodes and edges as well
as rich semantics. One research issue is: how to represent
nodes and utilize the rich semantics of transportation graphs,
i.e., how to mine potential relationships between different
types of nodes and edges. The last challenge is the over-
smoothing problem. When using a graph neural network,
as the number of network layers and iterations increases,
eventually all nodes converge to the same value, resulting in
a decrease in the model representation ability.

We collected and analyzed the Beijing dataset5 from
Baidu Maps and found some interesting results. Specifically,
as shown in Figure 1, there are eleven transport modes in total,
including uni-modal and multi-modal, namely bus, metro,
car, taxi, walk, bicycle, bus-metro, taxi-bus, bicycle-metro,
taxi-metro, and bicycle-bus-metro. We encode these transport
modes into numerical labels ranging from 1 to 11. The result
shows that a mixed-mode of transportation is as important
as a single mode of transportation in transportation recom-
mendation. Hence, considering multi-modal in transportation
recommendation is well worth studying. In addition, albeit
89.1% of the existing recommendation results are suitable for
users [9], more than 32.5% of the recommendation results in
the recommendation list are not clicked by users, as shown in
Figure 2. This result shows that the improvement of the current
transportation recommendation scheme is an urgent task.

In order to solve the above challenges, make full use of
uni-modal modes of transportation and multi-modal as well
as increase the click-through rate, we collect a large-scale real
dataset and propose a novel framework called multi-modal
Transportation recommendation with Heterogeneous graph
Attention Networks (THAN). The main contributions of our
work are as follows:

• We propose THAN, a multi-modal transportation rec-
ommendation system. To the best of our knowledge,

5https://dianshi.bce.baidu.com/competition/29/rule

Fig. 1. Statistics on the usage of various modes of transportation.

Fig. 2. Count of Beijing.

this is the first solution to implementing multi-modal
transportation recommendation with heterogeneous graph
attention networks.

• To obtain the features of nodes, we propose a novel
latent feature mining method, named the Multi-Bigraph
Embedding method (MBigraphE), which can represent
the relationship between the origin and destination as well
as the relationship between OD pairs and users.

• To utilize the rich semantics of transportation graphs,
we design a hierarchical attention mechanism with resid-
ual blocks. It can represent features from the perspective
of homogeneity, obtain potential features from a heteroge-
neous perspective, and ensure the network can be trained
stably.

• We collect and open a large-scale real multi-modal
transportation recommendation dataset. THAN conducts
extensive experiments on this dataset. The results show
that our scheme outperforms five state-of-the-art algo-
rithms in four metrics.

The paper is organized as follows. Section II reviews
some related works. Section III presents the preliminaries.
Section IV introduces THAN. Section V evaluates the per-
formance of the proposed solutions and Section VI concludes
the paper.
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II. RELATED WORKS

A. Uni-Modal Transportation Recommendation

Transportation recommendation engines usually use the
shortest route query algorithm [17] with a predetermined
cost function [18] to achieve path planning, which aims to
recommend the most cost-effective (e.g., shortest travel time,
lowest price, least passing traffic lights, or shortest distance
traveled) routes. It is difficult to meet the differentiated
needs of users only with a fixed cost-effective function as
the goal of path planning. To meet the personalized needs
of different users, reference [19] takes the personalization
factor into account in route planning for the first time and
uses it to improve the quality of transportation recommenda-
tion. Specifically, reference [13] recommends travel routes by
considering each driver’s personal preferences (e.g., drivers
care more about time efficiency or fuel efficiency). Some
schemes that consider multiple objectives based on large-
scale historical trajectories are proposed to improve the qual-
ity of recommended paths [20], [21]. However, with the
continuous expansion of the transportation network and the
complexity of travel conditions (i.e., large-scale trajectories),
it is difficult for people to find the optimal route from one
place to another through the transportation system, e.g., the
public transportation system [22]. Machine learning shows
huge advantages in mining large-scale trajectories. Recently,
a data-driven machine learning engine Polestar is proposed
to recommend intelligent and efficient public transportation
routes [10], which ignore people’s mobility patterns [14], [23].
Moreover, other shared transports are considered in some
works to improve the efficiency and benefits of roads
have also attracted widespread attention [24], [25], e.g.,
bike-sharing [26]. However, the above-mentioned methods
only consider one transport mode, and cannot be directly
used to solve the problem of multi-modal transportation
recommendation.

B. Multi-Modal Transportation Recommendation

The multi-modal transportation recommendation system
considers both single (e.g., bus, metro, taxi) and mixed
(e.g., bus-metro, bus-taxi, metro-taxi) transport modes, which
attract attention from academia [24], [27] and industry [8],
[9], [16]. For example, a personalized route recommendation
method FAVOUR is proposed to solve the problem of multi-
modal transportation recommendation. However, this method
requires a large amount of user privacy information to oper-
ate, it is difficult to implement [27]. Trans2vec [8] realizes
multi-modal transportation recommendation by learning the
embedding between users, OD pairs, and transport modes.
However, this solution is plagued by the cold-start problem
and requires additional models or strategies to deal with new
examples. To this end, a fusion network embedding model
data-driven scheme Hydra is proposed for multi-modal route
recommendation [9], which ignores the significance of bike-
sharing as a convenient transport mode. HMTRL [16] intro-
duces an attention mechanism into multi-modal transportation
recommendation, which aims to mine potential relationships
between nodes of the same type in traffic data, thereby

improving the accuracy of transportation recommendation.
However, HMTRL cannot capture the relationships between
different types of nodes and edges. NMTRec [3] builds a
bipartite graph based on user trajectory data to describe the
network structure between the user and OD pairs as well as
origin and destination, which uses Word2Vec [28] to mine the
relationship between nodes. The LightGBM [29] is introduced
in NMTRec to predict the scores of transport modes, and
complete the recommendation by ranking the scores. MTRecS-
DLT [30] fuses a convolutional neural network and gradient
ascent decision tree model as an integrated learning model
to learn effective features in data. This model takes into
account the advantages of the neural network model and
machine learning model to obtain ideal data representation and
realizes multi-model transportation recommendation. TTCA
considering both taxi and bike-sharing takes less time than
considering taxi or bike-sharing alone [24]. Some researchers
considered combining traditional optimization algorithms with
machine learning to improve the accuracy of multi-modal
transportation recommendation. Specifically, they proposed
a context-aware multi-modal transportation recommendation
based on particle swarm optimization and LightGBM [31] as
well as a multi-modal transportation recommendation scheme
based on graph embedding and CaGBDT [32], respectively.
Existing solutions are implemented based on machine learning
and cannot handle the datasets used in our work (i.e., graph-
structured data). Instead, graph neural network-based schemes
are suitable.

C. Graph Neural Network

Almost all natural data can be represented by a graph
structure [33]. Graph neural network (GNN) has been proved
to be able to effectively represent graph structure data [34],
which aims to extend the deep neural network to process
arbitrary graph structure data [35]. Recently, the emergence
of graph convolutional neural networks (GCN) has promoted
the development of GNN [36], [37]. Compared with GNN,
GCN performs generalized convolution operation on graph
structure data [38]. GCN is usually divided into two cat-
egories, namely spectral-domain [36], [39], [40] and non-
spectral domain [41], [42]. For example, Kipf and Welling [36]
proposes a spectral method called graph convolutional net-
work, which designs graph convolutional networks through the
local first-order approximation of spectral graph convolution.
Hamilton et al. [41] designs GraphSAGE, which implements a
neural network-based aggregator on fixed-size node neighbors.
It can learn a function to generate embeddings by aggregating
features from the local neighborhood of the node. However,
neither GCN nor GraphSAGE can distinguish the importance
of neighbor nodes. To solve the above problems, the attention
mechanism is proposed in [43] and [42], which has been
used in many studies, e.g., the recommendation [44] and
finance [45]. Inspired by the above schemes, HMTRL [16]
is proposed to improve the accuracy of transportation rec-
ommendation. However, the above-mentioned works can only
be applied to homogeneous graphs and cannot handle various
types of nodes and edges (i.e., heterogeneous graphs).
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TABLE I

EXAMPLE OF INTERACTION BETWEEN USERS AND BAIDU MAP

Fig. 3. Heterogeneous transportation graph in navigation data.

At present, some researchers focus on heterogeneous graphs
[38], [46], [47], [48], [49]. For example, HAN [38] aims to
convert heterogeneous graphs into homogeneous graphs and
uses hierarchical attention to describe node-level and semantic-
level structures. Although HAN has made great efforts in
dealing with heterogeneous graph data, it still remains in the
processing of homogeneous graphs, and it is difficult to obtain
features from heterogeneous views (neighbors of different
node types). To this end, a novel heterogeneous graph neural
network algorithm HeCo is proposed to try to capture the
influence of different types of nodes [49]. However, as the
network deepens, there will be more and more training errors
because of the problems of over-smooth in HAN and HeCo.

III. PRELIMINARIES

In this section, we give an explanation of the dataset
representation, some definitions, and problem formulation.

A. Dataset Representation

In this paper, the navigation data we collect comes from
Baidu Maps,6 which records the process from the user first
inputting the OD pair, then the route planning given by Baidu
Maps, and finally, the user clicking and selecting the plan,
as shown in Table I. The dataset consists of user attribute
data, origin data, destination data, and transport mode data
and is presented in a time-series format. Existing solutions
cannot capture the relationship between the user, transport
mode, origin, and destination when dealing with those data.
To this end, we integrate the datasets and convert them into
graph-structured data,7 as shown in Figure 3. The graph-
structured data contains nodes such as users, transport modes,

6https://map.baidu.com/
7https://github.com/xuaikun/THAN

OD pairs, origin and destination, and edges with relationships
such as “Take” and “Travel”. Moreover, it also implies that
user “u” uses transport mode “m” to travel on OD pair “od”.
To represent the data more clearly, we use equations (1) and (2)
to represent the node data in Figure 3,

Xm = {Xu, Xo, Xd , Xcon} ∈ R
N×(m+p+p+k), (1)

Xod = {Xo, Xd } ∈ R
N×n , (2)

where Xu ∈ R
N×m , Xcon ∈ R

N×k , Xo ∈ R
N×p , and

Xd ∈ R
N×p represent the user profile data, the context data,

the origin data, and the destination data, respectively. m, k
represent the dimension of the user profile data, and the
context data, respectively. p is the dimension of the origin
and destination data. n is the dimension of OD pairs data,
n = p + p. N is the number of transport modes. Specifically,
the total data volume (i.e., N), the number of users, and
the number of OD pairs are 308,507, 42,342, and 156,958,
respectively.

B. Definition

Definition 1 (Origin-Destination (OD) Pair): An origin o is
usually the starting point of path planning. In the navigation
APP, it is usually the user’s current location or other locations
set by the user. A destination d is the end of path planning, and
it is usually changed by the user. An OD pair od = (o, d) is
composed of origin and destination, which is a pair of regions.

Definition 2 (Heterogeneous Transportation Graph): A het-
erogeneous transportation graph is denoted as G = (V , E),
which consists of an object set V and an edge set E .
A heterogeneous transportation graph is also associated with
an object type mapping function φ : V → A and an edge
type mapping ψ : E → R, where A and R denote the sets of
object types and edge types, and |A| + |R| > 2.

As shown in Figure 3 (a), we build a heterogeneous graph
to model the transportation graph, which consists of five types
of objects (i.e., User (u), Mode (m), OD Pair (od), Origin (o),
and Destination (d)) and two types of relations (i.e., “take” and
“travel”, e.g., user takes mode, and mode travels OD pair).

Definition 3 (Network Schema): The network is defined as
TG = (A, R), which is a meta template of a heterogeneous
transportation graph G with the object type mapping function
φ : V → A and the edge type mapping ψ : E → R.
Meanwhile, TG is a directed graph defined on the object type
set A, with the relationship on R as the edge.
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For example, Figure 3 (b) describes the network schema of
heterogeneous transportation graph. We usually use network
schema to describe the direct connections between different
nodes in G. The network schema is the local structure of a
heterogeneous transportation network. In Figure 3 (b), we can
know that mode m1 is took by user u1 travel on OD pair od1.

Definition 4 (Meta Path): A meta path is defined as a path

in the form of A1
R1−→ A2

R2−→ · · · Rl−→ Al+1 (simplified
to A1 A2 · · · Al+1), which describes a composite relation R =
R1 ◦ R2 ◦ · · · ◦ Rl between objects A1 and Al+1, where ◦
represents the composition operator on relations.

For example, Figure 3 (c) shows that modes can be
connected via multiple meta paths, e.g., Mode-User-Mode
(MUM) and Mode-OD-Mode (MODM). Different meta paths
describe semantic relations in different views. Specifically,
MUM describes that two modes are taken by the same user,
while MODM means two modes travel on the same OD pair.
The meta path is regarded as a high-level structure because it
is composed of multiple relationships and contains complex
semantics.

Problem (Multi-Modal Transportation Recommendation
Problem): Given a heterogeneous transportation graph G,
a user u, an OD pair od , and some context information cont ,
we aim to recommend the most suitable transport mode m for
users to travel on OD pair. Specifically, the optimal mapping
function f (·) of transport mode is learned from the input data.

m = f (G, u, od, cont). (3)

IV. THAN

This section presents the framework of THAN in detail.

A. Overview

Figure 4 shows an overview of THAN. It consists of
four major parts: Bigraph, Heterogeneous graph, Hierarchical
attention, and Fusion neural layer. The Bigraph module builds
an origin-destination bipartite graph and a user-OD bipartite
graph based on the existing dataset, and uses GCN and
GAT to represent the feature of origin, destination, OD pair,
and user, respectively. Thereafter, the Heterogeneous graph
module extracts heterogeneous transportation graphs from
large-scale data and assigns initial features to each node.
Meanwhile, the Hierarchical attention module represents the
embedding of transport modes from the view of homogeneity
and heterogeneity. Finally, the Fusion neural layer module
integrates homogeneous features and heterogeneous features
to make recommendation.

B. Bigraph

In the navigation system, the destination will always appear
with the origin, and the OD pair is formed by associating
them. Obtaining the OD pair is one of the most critical tasks
in the navigation task. The OD pair used by each user is almost
different. Associating the OD pair with a specific user is very
important for mining the user’s personalized characteristics.
To establish the link between origin data and destination data

and the link between OD pairs data and user data, we utilize
the origin data (O), the destination data (D), the OD pairs data,
and the user profile which belongs to the multi-modal data to
construct a bipartite graph. For each origin (or destination),
an edge is built between the origin and the destination, only
if the corresponding OD pairs exist. Then, we construct an
origin-destination bipartite graph via Xo ∈ R

N×p and Xd ∈
R

N×p , and then the node of bipartite graph aggregates infor-
mation of neighbors by GCN model. Combining the origin
and destination data can update the features of OD pairs data
Xod ∈ R

N×n . Obviously, we can intuitively understand that
the origin (or destination) affects the destination (or origin)
from the origin-destination bipartite graph. For each OD pair
or user, an edge will be built between the OD pair and the
user, only if the user has traveled on the OD pair. Finally,
a user-OD bipartite graph is constructed via Xu ∈ R

N×m and
Xod ∈ R

N×n , and the node information is updated by the GAT
model. To achieve the above functions, we propose a method
named Multi-Bigraph Embedding (MBigraphE) to extract the
latent features of o, d , od , and u, which includes the GCN
layer and GAT layer.

1) GCN Layer: After getting the origin-destination bipartite
graph, we update the characteristics of origin and destination
separately by GCN,

e(l+1)
oi

=
∑

d j ∈N(oi )

1√|N(oi )||N(d j )|
e(l)d j
, (4)

e(l+1)
di

=
∑

o j ∈N(di )

1√|N(di )||N(o j )|
e(l)o j
, (5)

where e(l)d j
and e(l)o j are the embeddings of the lth layer of

d j and o j , respectively. N(oi ) and N(di ) represent the set
of neighbors of origin oi and destination di , respectively.
|N(oi )|, |N(di )| are the degrees of origin o j and destination di

respectively. eod = eo||ed , when the corresponding OD pairs
is exist.

2) GAT Layer: After getting the user-OD bipartite graph,
the initial representation matrix of user-OD bipartite E is

E = [e(0)od1
, e(0)od2

, · · · , e(0)odM︸ ︷︷ ︸
O D pair embedding

, e(0)u1
, e(0)u2

, · · · , e(0)u Q︸ ︷︷ ︸
user embedding

], (6)

where M and Q represent the number of OD pair and
user, respectively. e(0)od , e(0)u are the initialization of OD pair
embedding and user embedding respectively.

In order to obtain the feature information of the user more
efficiently, we aggregate the messages propagated from the
neighborhood of u to refine the embedding of u. Specifically,
we define the aggregation function as

e(l+1)
ui

=
∑

od j∈N(ui )

aui od j W
(l)
1 e(l)od j

, (7)

where e(l+1)
ui denotes the embedding of ui obtained at (l +1)th

GAT layer, N(ui ) is neighbor set of ui , W (l)
1 is the trainable

weight matrices. aui od j is attention value between ui and od j
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Fig. 4. THAN overview.

that can be shown as

a(l)ui od j
= so f tmax(edge(l)uiod j

), (8)

edge(l)uiod j
= ρ(aT [W (l)

2 e(l)ui
||W (l)

3 e(l)od j
]), (9)

where W (l)
2 , W (l)

3 are the trainable weight parameters, ρ
denotes the activation function LeakyReLU, a is the attention
weight vector, || denotes the concatenate operation, e(l)ui and
e(l)od j

are the representation of ui and od j in l layer of GAT
network. Therefore, the embedding of user (or OD pair) based
on the user-OD bipartite graph, through the GAT layer, is
eu (or eod). The context data after standard normalization is
denoted as em .

C. Heterogeneous Graph

After analyzing a large number of navigation data, we found
that the data not only includes entities such as users, origins,
destinations, OD pairs, and traffic modes, but also includes use
(i.e., user use the mode) and travel (i.e., the mode travel on OD
pair) relationships. This fits perfectly with the definition of a
heterogeneous graph, as shown in Section III-B, so we can
project navigation data onto a heterogeneous transportation
graph for processing. The heterogeneous graph contains the
structure of (u,m, od), which represents user u uses transport
mode m on od . We aim to recommend the most suitable
transport mode m for user u to travel od . Based on previous
results, the embedding vector for each node of the heteroge-
neous graph can be shown as

einit = eu ||eod||em, (10)

where || denotes the concatenate operation. Specifically, the
final embedding of the transport mode can be shown as

Em = {Eu, Eod , Em} ∈ R
N×( f1+ f2+ f3), (11)

where Eu ∈ R
N× f1 , Eod ∈ R

N× f2 , and Em ∈ R
N× f3

respectively represent the heterogeneous nodes embedding
from multi-modal data, f1, f2, and f3 represent the size of
the embedding dimension. e′

m ∈ Em denotes the multi-modal
embedding vector for each transport mode.

D. Hierarchical Attention

In a heterogeneous transportation graph, most nodes have no
less than one neighbor node, but each neighbor node usually
has a different effect on the current node, so the importance
of identifying neighbors is particularly important. In our work,
neighbor nodes are obtained according to different meta-paths,
and the importance of neighbors obtained through different
meta-paths to the current node also needs to be distinguished.
To distinguish the importance of nodes and semantics as well
as solve gradient instability, we design hierarchical attention
with residual block to mine the latent features of the temporary
embedding of the transport mode, which includes the ResNet
layer, Node attention layer, and Weight attention layer.

1) ResNet Layer: For deep neural networks, as the network
deepens, it should be trained better and better. However, as the
network deepens, there will be more and more training errors
because of the problems of over-smooth. Preliminary work
has confirmed that ResNet does help to solve the over-smooth
problem. It makes it possible to ensure good performance
when training deeper networks. Therefore, we added residual
block in the training process of heterogeneous graph network,
i.e., the value of H hxm

�s
is directly affected by both ehx(l+1)

m

and ehx(l)
m , where hx ∈ (ho, he).

H hxm
�p

= σ(W hx(l+2)
4 ehx(l+1)

m + bhx(l+2) + ehx(l)
m ), (12)

where hx is the type of node (i.e., homogeneous nodes
(ho) and heterogeneous nodes (he)). Give the meta path set
{�1,�2, · · · ,�S}, which included �s . σ represents activation

function eLU, W (l+2)
4 is the trainable weight matrix, b(l+2) is

the bias vector. e(l)m denotes the temporary representation for
transport mode m at the layer l.

2) Node Attention Layer: Based on the graph attention
mechanism, e(l+1)

mi is computed as

ehx(l+1)
mi

=
∑

m j ∈N(mi )

ami m j W (l)
5 ehx(l)

m j
, (13)
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where e(l+1)
mi is the temporary embedding of transport mode m

at the layer l + 1, which contains information about neighbor
nodes of mi .

3) Weight Attention Layer: It is worth noting that the
importance of edges between neighbors will also affect the
representation of transport mode m. The final embedding of
each transport mode m is aggregated by all edges embedding
in equation (14). Then we can apply the final embedding to
specific tasks, e.g., node classification, node prediction, and
recommended system,

ehx(l+2)
m =

S∑

s=1

so f tmax(H hxm
�s

) · ehx(l+1)
m . (14)

E. Fusion Neural Layer

As shown in Figure 4, the final transport mode feature is
determined by both the heterogeneous view feature and the
homogeneous view feature. Therefore, it is necessary to merge
the above two features for prediction. In this paper, hx is
represents the type of homogeneous node and heterogeneous
nodes (i.e., hx ∈ (ho, he), homogeneous nodes (ho) and
heterogeneous nodes (he)). The multi-modal embedding e′

m
with multiple fully connected layers is used to predict the
most suitable transport mode m for user u to travel od ,

e′
m = eho

m ||ehe
m , (15)

y ′
m = so f tmax(�(W (l)

6 e′(l)
m + b(l))), (16)

where W (l)
6 is the trainable weight matrix, � is the activation

function ReLU, e
′(l)
m denotes the final multi-modal representa-

tion for transport mode m at the layer l, and b(l) is the bias
vector. Finally, we use softmax function and obtain the final
prediction score y ′

m .

F. Optimization

For model optimization, our method could be trained with
a supervised setting. Based on the cross-entropy loss, the
objective function could be defined as

Loss = −
C∑

i=1

ymi log(y ′
mi ), (17)

where C is the number of classification, ymi is the actual label,
y ′

mi
is the predictive scores. Under the guidance of labeled

data, we can optimize the proposed model through backprop-
agation and learn the embedding of transport mode m.

V. EXPERIMENTS

In this section, we describe the experimental setups and
results. The results obtained with THAN are compared with
five of the state-of-the-art methods for multi-modal transporta-
tion recommendation.

A. Experimental Setup

1) Dataset: We conduct experiments on our own dataset
to verify the performance of the proposed framework
THAN. In this dataset, users, transport modes, and OD
pairs respectively represent nodes of heterogeneous graphs.

Fig. 5. Speed of transport mode.

Fig. 6. Relationship between transport mode utilization rate u_rate and
travel distance.

Moreover, users clicking transport mode and transport modes
travel on OD pairs represent relationships (i.e., edges) of
heterogeneous graphs. In this paper, we consider eleven
transport modes {bus, metro, car, taxi, walk, bicycle, bus-
metro, taxi-bus, bicycle-metro, taxi-metro, and bicycle-bus-
metro}. We encode these transport modes from mode 1 to
mode 11. The speed comparison between different modes of
transportation is shown in Figure 5. Mode 3 (car) has the
fastest speed, and mode 5 (walk) is the slowest. The utilization
rate of the transport mode is u_rate = part_t imes

total_t imes , where
part_times is the number of times the transport mode is
used within a certain path length and total_times is the total
number of times the transport mode is used. u_rate has a
very strong correlation with the travel distance. As shown in
Figure 6, modes 5 and 6 are usually used for trips less than
8 kilometers.

2) Parameter Settings: The proposed method is imple-
mented with Pytorch and optimized by Adam with a learning
rate of 0.0001 in DGL. The number of heads in the attention
mechanism is 8. The hidden layer dimensions in homogeneous
and heterogeneous structures are 128 and 64, respectively. The
parameters of NMTRec and Hydra remain the same as the
work [3], [9], i.e., the maximum depth is 5 and the columns
sample rate is 0.8. The related hyperparameters settings of
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TABLE II

COMPARISON OF PRE, REC, NDCG AND F1 BETWEEN NMTREC,
HYDRA, HMTRL, HAN, HECO AND THAN METHODS

(TRAIN AND TEST ON BEIJING DATASET)

heads in the multi-head attention of HAN, HeCo, and HMTRL
are the same THAN, i.e., the number of heads is 8, where the
dropout of attention to 0.6. And we use early stopping with
the patience of 200, i.e., we stop training if the validation
loss does not decrease for 200 consecutive epochs. The source
code and datasets are publicly available on Github8 after
the paper is accepted. The number of transport mode, users,
and OD pairs are respectively N = 308507, Q = 42342,
and M = 156958. The dimension of user data, OD pair, and
context data are respectively m = 66, n = 8, and k = 57.
The dimension of o and d data are p = 4. The dimension of
user embedding, context embedding, and od embedding are
respectively f1 = 66, f2 = 2071, and f3 = 611. We split all
data randomly, the training set 70%, the validation set 10%,
and the test set 20%.

3) Evaluation Metrics: We evaluate the THAN with four
metrics including the Precision (Pre), Recall (Rec), Normal-
ized Discounted Cumulative Gain (NDCG), and F1. The
NDCG metric considers all transport modes, while the remain-
ing metrics only focus on the top-1 recommendation. There
are many classes of transport mode, we define F1 as the weight
F1. For each class, the F1 score is

F1,classi = 2Pre × Rec

Pre + Rec
, (18)

The weighted F1 considers the weight of each class, and
can be formulated as

F1 = w1 F1,class1 +w2 F1,class2 + · · · + wi F1,classi (19)

where the weight wi is calculated by the ratio of true instances
for class i .

B. Results and Analysis

We analyze the experimental results on a large-scale nav-
igation dataset to verify the effectiveness of THAN, includ-
ing performance comparison, robustness verification, ablation
tests, MBigraphE rationality, and parameter sensitivity.

1) Performance Comparison: We compare the results of
our method for transport mode prediction with that of five
state-of-the-art models including NMTRec [3], Hydra [9],
HMTRL [16], HAN [38], and HeCo [49], as shown in Table.II.
Overall, THAN outperforms all the baselines on the Beijing
dataset using all metrics, which demonstrates the advance of
our model. Specifically, THAN achieves (0.8%, 6.2%, 0.8%,
4.9%) F1, Pre, Rec, and NDCG improvement compared with

8https://github.com/xuaikun/THAN

the state-of-the-art scheme (Hydra) on the Beijing dataset.
Moreover, we can make the following observations, (1) the
performance of NMTRec is much worse than Hydra. This
observation indicates that using too many features to train
makes the training process over-fitting. (2) Hydra is a base-
line algorithm by incorporates fine-grained handcrafted fea-
tures and high-order embedding features. However, compared
with graph learning-based methods, e.g., HAN, HeCo, and
HMTRL, the manually extracted features limit the recom-
mendation capability of the model. (3) HAN, HeCo, and
HMTRL are graph learning-based methods, which can make
up for the shortcomings of the former. However, HAN, HeCo,
and HMTRL ignore the interaction of constituent nodes and
the importance of residual structure in the training process,
therefore performing worse than our method. In conclusion,
NMTRec and Hydra are worse than THAN. This is because,
there are rich spatial relationships between nodes in traffic
datasets, which are usually not negligible. THAN can learn
spatial features, while NMTRec and Hydra cannot. Compared
with existing graph neural network schemes (i.e., HAN, HeCo,
and HMTRL), THAN performs better. This is because THAN
can not only learn the relationship between homogeneous
nodes, but also enhance the feature representation from the
perspective of heterogeneity.

2) Robustness Verification: A robust algorithm should per-
form evenly on different query subgroups and have similar
performance. To verify the robustness of THAN, we divide
the data evenly into four groups and apply our model to test
the performance of each group’s data. Figure 7 shows the
performance of THAN on different subgroups on the Beijing
dataset. For different groups, the results are strongly stable
on four metrics. Specifically, the difference in values does
not exceed 2% in all our tests using the four metrics. The
result validates that our THAN is robust for different transport
mode recommendation. Moreover, the validation results on
the Guangzhou dataset show that the values of F1, Pre, Rec,
and NDCG are similar to the results obtained on the Beijing
dataset and also maintain a difference within 2%, which further
explains THAN has good robustness.

3) Ablation Test: To further explore the effect of
multimodal fusion in our proposed model, we com-
pare THAN with THAN(ResNet), THAN(MBigraphE),
THAN(HierAtt), and THAN(ResNet&MBigraphE), where
THAN(ResNet), THAN(MBigraphE), THAN(HierAtt), and
THAN(ResNet&MBigraphE) are parts of our model and
described as no consider ResNet layer, MBigraphE, HierAtt,
and both ResNet and MBigraphE to make transport modes pre-
diction, respectively. As shown in Figure 8, the performance
of THAN outperforms THAN(ResNet), THAN(MBigraphE),
THAN(HierAtt), and THAN(ResNet&MBigraphE). Moreover,
the THAN(MBigraphE) and THAN(HierAtt) perform better
than THAN(ResNet), which demonstrates the residual block
plays a more important role in multi-modal transportation
recommendation. This is because ResNet does help to solve
the problem of over-smooth, making training better, or at
least ensuring that the current result is no worse than the
last. What’s more, MBigraphE can balance the importance
of features. This is because MBigraphE not only learns
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Fig. 7. Robustness by group on different datasets.

Fig. 8. Ablation test of THAN.

neighbor embeddings but also distinguishes the importance of
neighbors.

4) MBigraphE Rationality: Then, We verified the rational-
ity of MBigraphE by evaluating three variants of THAN,
(1) THAN_o_d_od_pid is not considering MBigraphE in
THAN, (2) THAN_o_d means that the interaction between
o and d is not considered, (3) THAN_od_pid represents than
the interaction between od and u is not considered. As shown
in Figure 9, considering the interaction between o and d or
od and u is better than not considering the effect. Moreover,

Fig. 9. MBigraphE validity verification.

Fig. 10. Evaluation of the number of heads.

Fig. 11. Dimensional evaluation of the hidden layer of homogeneous
structure.

considering the interaction between o and d and od and u at
the same time is better than considering the effect separately,
demonstrating the effectiveness of MBigraphE.

5) Parameter Sensitivity: We further study the parameter
sensitivity of THAN. Each time we vary a parameter, we set
others to their default values.

Firstly, we vary the number of heads from 1 to 16.
The results are reported in Figure 10. As the head
increases, the performance first increases and then decreases.
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Fig. 12. Dimensional evaluation of hidden layers of heterogeneous structure.

Therefore, setting the number of heads to 8 can achieve the
best performance.

Then, we vary the dimension of homogeneous structure
from 8 to 256. The results are reported in Figure 11. Using
128 dimensions is good enough to capture representation
information in the homogeneous structure.

Finally, we vary the dimension of heterogeneous structure
from 8 to 256. The results are reported in Figure 12. The best
performance can be achieved when the dimension is 64 in the
heterogeneous structure.

VI. CONCLUSION

Although transportation recommendation is increasingly
popular and frequently used, the existing solutions still cannot
meet the diverse needs of users. After analyzing the data,
we found that the navigation data can be represented as a
graph. The graph neural network has shown a powerful ability
in processing graph data. In this paper, we propose a novel
and base-graph learning framework, named THAN, which can
recommend the most suitable transport mode for users. Firstly,
based on the powerful expression capabilities of GCN and
GAT in bipartite graphs, we design a mining method called
MBigraphE to represent the potential relationship between
heterogeneous nodes. Then, we construct a heterogeneous
transportation graph based on the relationship between nodes
in a large-scale dataset and initialize node features. In order
to obtain the representation of nodes, we further study the
features of nodes from both the perspectives of homogeneity
and heterogeneity, and use the residual block to stabilize
network representation. Finally, we design a fusion neural
layer to fuse embeddings from different views, it can predict
and recommend the most suitable transport mode for users.
We conduct extensive experiments on a large-scale real dataset.
The results show that the system has achieved state-of-the-art
performance.
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