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Summary

Shared transportation is a new way of traveling generated by the rapid devel-

opment of the “Internet +” and the sharing economy. Due to the limited

energy carried by shared e-bikes, the energy problem becomes the primary

obstacle restricting its development. At present, one way to solve the energy

problem is to use mobile charging vehicles (MCVs). However, how to schedule

MCVs to achieve fast response, reduce energy consumption, and improve

charging efficiency is crucial. In this paper, we propose a Charging Scheduling

scheme based on Dynamic Characteristic of shared e-bike in Obstacle Space

(CSDC-OS). Firstly, we design two MCV departure mechanisms to solve the

problems of low utilization of MCVs and long waiting time for shared e-bikes.

Then, we design the schedulability conditions based on the A-star algorithm

and the dynamic change of e-bikes to ensure that MCVs can return to the ser-

vice station in time. Finally, we propose a charging sequence algorithm based

on linear skyline query and a selective insertion algorithm to improve the

charging efficiency of MCVs. Simulation results show that the CSDC-OS can

improve the response time, mobile consumption, and charging efficiency by

more than 8% on average.
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1 | INTRODUCTION

The public bicycle transportation system is one of the fastest growing public transportation modes in the world, with an
average annual increase of 37% since 2009.1 China has the fastest growth rate, and the sales of electric bicycles (e-bikes)
exceed other vehicles.2,3 E-bikes are more energy efficient and emit fewer greenhouse gas (GHG) per unit than other
modes of transportation, such as cars, buses, and motorcycles.4 Shared bicycles, as a new mode of public transport that
emerged in the past few years, are the most convenient and environmentally friendly short-haul public transport ser-
vice. They have been deployed in major cities around the world thanks to their safety and cost-effectiveness.5

Following the sharing bicycles, shared electric bikes (shared e-bikes) become another popular option in the era of
shared operations. Since shared e-bikes rely on batteries, the key factor restricting its normal operation is the remaining
energy of the battery. How to recharge the battery is a challenge for the future operation of shared e-bike rental compa-
nies. Taking mobile charging vehicles (MCVs) to the service area where they can be charged when charging request is
received is crucial, thus fundamentally solving the energy limitation problem of e-bikes. MCVs are vehicles that can
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carry energy and be actively charged. With its special charging configuration, MCVs can perform fast charging and
accomplish multiple charging tasks simultaneously. Although the price of MCVs is relatively high, they are still a popu-
lar choice due to their strong liquidity characteristics which can meet high charging demand in urban areas, and reduce
the operation and maintenance cost to a certain extent for tram rental companies, hence saving manpower and material
resources.

Researchers have done a lot of work on shared e-bikes. Ji et al.6 design a corresponding shared system based on the
shared e-bike trial project at Knoxville, Tennessee (UTK) campus. Numerous scenarios were simulated for sensitivity
analysis, and experiment results revealed the need to equip each e-bike with multiple replaceable batteries in areas of
high pedestrian density in order to meet maximum user demand. Fyhri and Fearnley7 demonstrate that the use
of shared e-bikes will increase the number of short trips made by the population and shared e-bikes have different ben-
efits for different groups of people. Currently, research on shared e-bikes has focused on shared system design,8–13

shared e-bike structure design,14–18 and battery pack optimization.19–23 Research on the charging mode of the shared
e-bike is still in its initial phase. Energy is the main problem that deters the development of shared e-bikes, leading to
an increase in operating costs in the future.

Shared e-bikes are an infrastructure of the Internet of things. Central equipment, shared e-bikes, and people are
connected via new efficient network connection methods, which finally realize the scientific and automatic connection
of objects, people, and intelligent network.24 Operators can centrally schedule and control e-bikes through central com-
puters to achieve efficient post-management.

Wireless sensor networks (WSNs) are one of the prominent areas of the Internet of things. They are distributed
wireless multi-hop networks composed of sensor nodes randomly distributed in the monitoring area. They have reliable
transmission and intelligent processing and are widely used in various industries.25 In traditional WSNs, sensor nodes
mainly use batteries to maintain the normal operation. The limited battery capacity is the key factor that limits the
entire lifetime of WSNs. Wireless rechargeable sensor networks (WRSNs) are a new type of network. They consist of a
series of sensor nodes with energy harvesting (EH) combined with wireless power transmission (WPT)26 to solve the
node energy limitation problem in WSN.27 The energy problem is also one of the main factors that limit the develop-
ment of shared e-bikes. We regard the shared e-bikes as sensor nodes in WRSNs and conduct research based on the
related work on WRSNs. The use of shared e-bikes has regional characteristics, and the locations constantly change.
The urban structures of different cities differ, which results in complex changes in traffic flow within each city and the
number of obstacles (such as buildings). The scheduling scheme for node energy supplementation in WRSNs therefore
cannot be directly applied to the charging scheduling scheme for designing MCVs in the following operation of shared
e-bikes. So optimizing the charging scheduling scheme of the MCVs in obstacle space brings extremely important value
and practical significance to urban shared e-bike operation.

In order to solve the energy limitation problem of shared e-bikes in complex environments, we propose an efficient on-
demand Charging Scheduling scheme based on Dynamic Characteristic of shared e-bike in Obstacle Space (CSDC-OS).
The main contributions of our work are as follows:

• Discussing charging scheduling for the practical application scenarios of shared e-bikes. We design a charging sched-
uling optimization scheme under the scene of dynamic changes of shared e-bikes and varying obstacles.

• Proposing two dynamic starting mechanisms of MCVs. These mechanisms can fully adjust the charging request
threshold and the task buffer pool size in combination with the number of charging requests in the network. Experi-
mental results show that our methods can reduce charging delay, increase the MCV charging throughput, and
improve resource utilization.

• Designing a charging path by combining the A-star algorithm with the dynamic changes of the e-bikes in obstacle
space. The scheduling conditions proposed can ensure that MCVs return to the service station smoothly, thus
increasing the feasibility of the charging scheduling scheme and reducing the risk of infeasibility.

• Designing a linear charging algorithm based on linear skyline query and a selective insertion algorithm to adjust the
charging order of e-bikes in different situations. Simulation experiments show that these two algorithms can improve
charging efficiency and reduce movement loss of MCVs.

The paper is organized as follows. Section 2 reviews some related work. Section 3 presents the problem description
and system model. Section 4 introduces MCV starting mechanism. Sections 5 and 6 describe the charging sequence of
e-bikes and the schedulability conditions of MCV charging. Section 7 presents the selective insertion algorithm. Sec-
tion 8 evaluates the performance of the proposed solutions, and Section 9 concludes the paper.
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2 | RELATED WORKS

The main problems faced by the shared e-bike are consistent with the main problems faced by the sensor nodes in the
WRSN. The mobile energy source is used to supplement the energy of the sensor nodes in the WRSN. This method can
fundamentally solve the energy problem in the WRSN, which is similar to the implementation process of using the
MCV for the shared e-bikes charging. Designing a reasonable and efficient charging scheduling scheme for mobile
energy sources is one of the basic research issues in WRSN. Charging scheduling refers to the reasonable design of the
hardware configuration and software configuration in the WRSN to ensure that all nodes in the network can maintain
normal operation during the target lifetime. Specifically, the hardware configuration is a reasonable design of various
working parameters of the mobile charging source. The software configuration is to design an efficient mobile charging
source charging scheme to maximize its utilization. Therefore, the goal of the charging scheduling problem is to achieve
maximum network utility with limited resources. In practical applications, a reasonable and efficient charging schedul-
ing scheme should be designed in combination with specific scenarios to maximize network utility.

2.1 | Maximize network utility–network lifetime

He et al.28 laid the theoretical foundation for on-demand mobile charging (DMC) in WRSN. Specifically, they proposed
a simple and effective “nearest-job-next with preemption” (NJNP) strategy. Using this strategy can analyze the problem
of DMC. The simulation results show that NJNP can effectively extend the network lifetime. Lin et al.29 considered the
charging mode in the traditional WRSN to encounter bottlenecks in terms of charging throughput and lifetime. Aiming
at this problem, a temporal and distantial priority charging scheduling (TADP) algorithm considering the distance from
the node to the MCV and the arrival time of the charging request was proposed. In addition, the two factors are gradu-
ally quantified. TADP formed a hybrid priority queue that directs the MCV to replenish energy for the node. The simu-
lation proved that TADP can guarantee the success of higher priority task scheduling and improve the stability of the
system. Liang et al.30 considered deploying an MCV in the network and proposed an approximation algorithm to opti-
mize the moving path to achieve the maximum energy, which extend the network lifetime. Lin et al.31 scheduled an
MCV in a large-scale network. They proposed a candidate node and routing node scheduling algorithm, which not only
solve the complex scheduling problem but also achieve higher charging throughput. Lin et al.32 considered using multi-
ple MCVs to supplement energy for nodes and proposed a game cooperative scheduling strategy to determine the ser-
vice nodes and service order, so that the throughput of MCV was maximized, thereby extending the network lifetime.

2.2 | Maximize network utility–MCV charging efficiency

Lin et al.33 designed a collaborative charging scheme based on game theory for the problem that the lack of uniformity
and dynamic charging strategy for collaborative charging schemes in WRSN. The charging scheme transformed the
charging process into a collaborative process between MCV and studied the charging priorities, charging contributions
and benefits between different MCVs to ensure that each MCV can achieve charging efficiency when complete charging
tasks. Lin et al.34 evaluated the lack of schedulability judgments in previous charging schemes, which would reduce the
charging efficiency of MCV and lead to an increase in node mortality. In this problem, the author proposed a charging
scheme based on optimal charging path planning and evaluates the schedulability of the charging task, so that the
charging schedule can be predicted. Thus, it could increase the charging efficiency and the charging success rate of
the MCV. Lin et al.35 proposed the shortest path charging strategy for underwater WRSN to minimize the total moving
distance of underwater robots. In addition, the author also proposed an emergency charging strategy to replenish
energy for nodes that need to be recharged. The combination of the two strategies not only reduced the mobile energy
consumption of the underwater robot but also improved the charging efficiency of the MCV.

2.3 | Minimize charging cost–deployment cost

Wang et al.36 considered a hybrid framework network combining EH and WPT, where the cluster head node is
powered by solar energy and the other nodes are powered by MCV. Using the approximate layout algorithm and
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multiple time scheduling algorithms proposed in the paper can minimize the deployment cost. Liu et al.37 comprehen-
sively considering user needs, investment costs, soil location, emergency charging mileage limit, actual road conditions,
service network reliability, and other factors, an MCV location optimization model with the dual goals of minimum
investment cost and minimum user charging cost is established. Chen et al.38 considered setting up charging MCV
(responsible for charging nodes) and serving MCV (responsible for charging MCV) in large-scale networks and designed
synergistic optimization of two MCV charging scheduling schemes to meet node charging requirements. Feasible algo-
rithms have also been designed to reduce the total amount of MCV required. Liu et al.39 introduced a new concept of
“shutting” and proposed an optimization algorithm (push-shuttle-back [PSB]) in WRSN to minimize the number of
required MCVs and get the best shutting distance (ignoring energy loss). Liang et al.40 considered the MCV energy limi-
tation and designed an on-demand scheduling strategy. This strategy was used to schedule MCV to charge nodes that
need to replenish energy in a large-scale network, thereby minimizing the number of MCV deployments.

2.4 | Minimize charging cost–charging delay

Zhong et al.41 proposed a real-time on-demand charging scheduling scheme (RCSS) for the dynamic change character-
istics of sensor nodes in the network. The MCV adjusted different nodes during the charging process and an adaptive
charging threshold was used to reduce the charging delay. Fu et al.42 determined the staying range of the MCV by
determining a minimum enclosed space containing all nodes and established a concentric circle centering on each node
to determine the coincidence position of the concentric circles as the stopping position of the MCV. At the same time,
the paper also considered that the location of the stay would cause the charging delay to increase. Finally, a scheme of
combining adjacent residence positions is proposed to reduce the charging delay. Lin et al.43 proposed a double warning
thresholds with double preemption (DWDP) charging strategy for time and space constraints in the charging process.
For the remaining energy of different sensor nodes, DWDP adjusted the node charging priority by adjusting the warn-
ing threshold to ensure high throughput and low charging delay.

The above researches usually ignore the impact of the MCV starting mechanism on the entire charging scheduling
scheme. Most of them are based on the fixed task buffer pool or fixed energy threshold to design MCV charging sched-
uling scheme. In the actual scenario, due to different charging requirements in different cities, the MCV starting mech-
anism will have an impact on the overall charging performance. Therefore, how to dynamically adjust the task buffer
pool size and charging energy threshold according to environmental changes is a problem that needs to be discussed in
this paper. In addition, existing researches usually discuss MCV charging scheduling in a single-factor or ideal environ-
ment, which also leads to existing researches not applicable to complex and variable shared e-bike operating
environments. Therefore, how to discuss a feasible charging scheme in a complex environment is a key step to solve the
energy problem of the shared e-bike.

3 | PROBLEM DESCRIPTION AND SYSTEM MODEL

3.1 | Problem description

In practical scenarios, shared e-bikes are in the process of continuous dynamic change, and their location has the char-
acteristics of time-varying because of the frequent use. In addition, there are a lot of obstacles (such as buildings) in the
urban area. Thus, the research on charging scheduling of MCV for static sensor nodes in ideal environment is no longer
applicable. We propose a charging scheduling scheme based on dynamic characteristics of shared electric bicycle in
obstacle space, which mainly solves problems as follows:

3.1.1 | MCV departure mechanism based on dynamic change of shared e-bike

There are two main MCV departure mechanisms in the existing researches. One is that the MCV receives the charging
request and then starts to serve the node that needs to be charged. The second is that the MCV has a fixed task buffer
pool. When the task buffer pool is full, it starts to perform charging tasks in the task buffer pool. These two departure
mechanisms have their inherent shortcomings. The first departure mechanism causes the MCV to start frequently and
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waste resources when the charging load is large. The second departure mechanism causes the node charged to wait too
long when the charging load is small. Designing a reasonable and efficient departure mechanism can improve MCV uti-
lization and reduce path loss. Departure from the shared e-bike and MCV, we design two adaptive MCV departure
mechanisms for different needs, which provide an important basis for optimizing the charging scheduling scheme.

3.1.2 | Reasonable and efficient shared e-bike charging order determination

We consider that the MCV only serves one e-bike at a time. The current charging order of the e-bike will affect whether
the subsequent e-bike can be charged before the energy exhausted. A reasonable and efficient charging sequence of
shared e-bike is very important to improve the charging throughput of MCV. The main factors affecting the charging
order we consider are the frequency of use in the past, the distance from MCV to e-bike, and the remaining energy.
How to design a reasonable charging sequence based on these influencing factors is a key step in the overall charging
scheduling scheme.

3.1.3 | MCV charging path selection in obstacle space

In the actual environment, a large number of obstacles cause the shared e-bike to be not directly reachable and is also
in a process of constant dynamic changes. Considering that the main energy consumption of the MCV is used for path
movement, selecting a feasible path for the MCV is very important for reducing the MCV path loss and improving the
MCV charging efficiency. In addition, the number of shared e-bikes that the MCV can serve is limited due to the limited
energy of the MCV. It is necessary to design a suitable charging path for the MCV, which is to ensure that the MCV
returns to the service station smoothly for energy replenishment.

3.2 | System model

It is assumed that N (N > 1) shared e-bikes and S square obstacles with side length r are distributed in a two-
dimensional rectangular area. Each shared e-bike is represented by Niði¼ 1,2,…,NÞ, and the shared e-bike collection is
N ¼fN1,N2,…,NNg. As shown in Figure 1, each shared e-bike is charged one-to-one by the MCV. In order to simulate
the continuous motion process of the e-bike in the real scene, it is assumed that the e-bike is moving at a uniform speed
of vSEB. The MCV moves from the service station SS at the speed of vM to the e-bike that needs to be charged. The ser-
vice station SS is located near the first served e-bike, ignoring the distance between the service station and the first
served e-bike. The battery capacity of the e-bike is ESEB, and the MCV selects the next e-bike to be serviced after charg-
ing the serviced e-bike to ESEB. There may be a special case, the MCV receives a charging request from a shared e-bike

TABLE 1 List of notations

Notation Definition

N Set of shared e-bikes in the two-dimensional rectangular area

ESEB The battery capacity of the e-bike

ET The threshold for shared e-bike (ET > EL)

EL The threshold for shared e-bike

vM The moving speed of the MCV

vSEB The moving speed of the shared e-bike

qM The mobile energy consumption of the MCV

qc The charging rate

Bminthr The minimum task buffer pool size of MCV

η The energy receiving efficiency

w The weighting factor

ZHONG ET AL. 5 of 24



(candidate charging e-bike) along the way while MCV moves to the next charging e-bike. The angle between the two
sides is γ, where one side is the connection between the MCV and the candidate charging e-bike and another side is the
connection between the next charging e-bike and the candidate charging e-bike. In this paper, we consider that when
the cosine of the offset angle threshold γ is approximately negative 1, which means the lower limit of γ is 90� and the
upper limit of γ is 270�. In this case, the candidate charging e-bike can be inserted into the MCV service queue. A
detailed explanation is in Section 7. Each time the MCV completes the charging task or the energy is insufficient, it
returns to the service station SS to replenish its own energy, supplements to the maximum battery capacity and waits
for the next charging schedule. The related notation definitions are shown in Table 1.

4 | MCV DEPARTURE MECHANISM BASED ON DYNAMIC CHANGE OF
E-BIKE

In the existing related research, the departure service mechanism for MCV usually considers two options. One is to start
the service for the e-bike in the task buffer pool when the charging request received by the task buffer pool of the MCV
is full. In this solution, the task buffer pool cannot be full when the workload is small, which may cause a large charg-
ing delay of some e-bike that need to be charged. The second is that the MCV immediately starts to service the e-bike
after receiving the charging request and dynamically selects the next charging e-bike during the charging process. This
kind of scheme will lead to a more frequent charging process when the workload is low, which results in wasted MCV
resources and low charging efficiency. In view of the problems of these two schemes, we propose the MCV departure
mechanism based on the adaptive task buffer pool and the MCV departure mechanism based on a double threshold.

4.1 | MCV departure mechanism based on adaptive task buffer pool

To illustrate the charging process based on the adaptive task buffer pool, we take Figure 2 as an example. In the initial
situation, the MCV task buffer pool size is the minimum task buffer pool size Bminthr. MCV selects the e-bike Ni to be
served when the task buffer pool size is full and sends CONFIRM message to Ni. At this time, Ni stops using and MCV
serves it. Whenever the MCV completes the charging service for the e-bike Ni, the task buffer pool size is updated auto-
matically according to the number of received charging requests. Then, the newly received charging request is added
according to the updated task buffer pool size. The MCV task buffer pool update process occurs during the entire MCV
execution of the charging task until the MCV returns to the service station due to insufficient energy or completion of
the charging task.

FIGURE 1 The scene of shared e-bike model under MCV charging
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We assume that the MCV has a maximum task buffer pool size Bmaxthr and a minimum task buffer pool size Bminthr.
Bmaxthr means that the maximum number of e-bikes can be served. Since the energy consumed by the MCV during the
movement is much larger than the energy used for charging. As shown in Equation (1), Bmaxthr is equivalent to
the number of e-bikes that can be serviced with the remaining energy after the total energy carried by the MCV minus
the energy consumed by the MCV moving the farthest distance,

Bmaxthr ¼
EM � Dmax

vM

� �
�qM

ESEB

6664
7775, ð1Þ

where EM is the residual energy of the MCV and the initial value of EM is 50,000 J. Dmax is the farthest moving distance
of the MCV, vM is the moving speed of the MCV, qM is the mobile energy consumption of the MCV, and ESEB is the total
capacity of the shared e-bike.

Bminthr is a fixed value and means the minimum number of e-bikes can be served and Bminthr ¼ 4. In order to make
the MCV task buffer pool size adaptively adjusted according to the number of charging requests in the current network,
as shown in Equation (2), we set a threshold ψ i according to the number of charging requests,

ψ i ¼
ni
jNj , ð2Þ

where ni is the number of charging requests that are not yet served by MCV. As shown in Equation (3), ni includes the
charging task nold that has been added to the task buffer pool and the number of newly received charging requests nnew.
jNj is the total number of shared e-bikes. After the MCV finishes the service for e-bike Ni, its adaptive task buffer pool
size Bthr(i) is adjusted as shown in Equation (4):

ni ¼noldþnnew, ð3Þ

BthrðiÞ¼ dψ iðBmaxthr �BminthrÞeþBminthr: ð4Þ

In short, the MCV departure mechanism based on adaptive task buffer pool has two obvious advantages. On the
one hand, when there is less load on the charging task in the network, the method of adaptively adjusting the size of
the task buffer pool according to the number of charging requests can reduce the waiting time for the shared e-bike to
wait for charging time by reducing the size of the task buffer pool. On the other hand, when there are many charging
tasks, the method can increase the size of the task buffer pool according to the number of charging tasks, thereby
increasing the throughput of the MCV.

FIGURE 2 Workflow timing diagram based on adaptive task buffer pool MCV departure mechanism
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4.2 | MCV departure mechanism based on dual threshold

To solve the problem of MCV wasting resources due to frequent departures, we set two energy thresholds for shared
e-bike, namely, EL and ET, and EL < ET. The charging process based on dual threshold is explained by Figure 3. When
the remaining energy of the e-bike Ni is lower than ET, the e-bike Ni sends a charging request to the MCV. Regardless
of the MCV task buffer pool size, the received charging request is placed into the MCV task buffer pool. When the
remaining energy of the e-bike Ni is lower than EL, Ni sends an ALERT message to the MCV, indicating that its energy
has reached the warning value. The MCV starts a round of charging after receiving the first ALERT message. The MCV
will determine the service order according to the charging order determination algorithm based on the skyline query
described below. After determining that the e-bike to be served first is e-bike Nj, the CONFIRM message is sent to
inform Nj that it will be served, and Nj stops working and waits for the MCV to charge it. After completing the charging
service of Nj, the MCV determines that the next e-bike to be served is Ni and sends CONFIRM message to Ni. Then,
MCV moves to Ni for service. This process is repeated until the MCV completes all charging requests or returns to the
service station due to insufficient energy.

Considering that EL is more important than ET, we set ET as a fixed value and the value of EL is solved by numerical
simulation because EL determines when the MCV starts to perform the charging task. Specifically, the value of EL is
dynamically calculated by using the average energy consumption rate (AECR) and the average failure probability
(AFP) per unit time. The numerical simulation is used to solve the change of the AECR and AFP values in the process
of adjusting the value of EL and get the best value of EL. As shown in Equations (5) and (6), we apply curve fitting to
the simulation results in order to derive two approximate linear relations of AECR and AFP in terms of EL:

AECRðELÞ≈A1ELþB1, ð5Þ

AFPðELÞ≈A2ELþB2, ð6Þ

where A1, A2, B1, and B2 are parameter values. As shown in Equation (7), the multi-objective optimization method is
used to optimize the value of EL.

44 We aim to minimize the values of AECR and AFP, introduce the weighting factor w,
and use the square sum equation in the least squares optimization method to optimize the solution,

FIGURE 3 Workflow timing diagram based on dual-threshold MCV starting mechanism
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f ðwÞ¼ ðAECRÞ2þwðAFPÞ2: ð7Þ

The optimal EL is able to minimize the value of the objective function in Equation (7). As shown in Equation (8),
the optimal EL can be obtained by bringing Equations (5) and (6) into Equation (7):

ELðwÞ¼�A1B1þwA2B2

ðA1Þ2þwðA2
2Þ
: ð8Þ

5 | THE CHARGING SEQUENCE OF E-BIKE BASED ON LINEAR
SKYLINE QUERY

The core idea of linear skyline query method is to consider a variety of factors affecting the charging order of e-bike
and try to find out the charging sequence which conforms to the definition of linear skyline query from all feasible ser-
vice electric bicycles.

The definition of the linear skyline query is derived from the definition of the skyline query. In the definition of the
skyline query, the charging order A dominates the charging order B if and only if the charging order A is superior to
the charging order B in one or several metrics and is not weaker than the charging order in other metrics.45 Our goal is
to find the e-bike that meets the corresponding conditions from all feasible charging sequences. These e-bikes constitute
the target set. The e-bike in the target set is not inferior to the metrics of the e-bikes in the nontarget set. In order to
introduce the definition of skyline query more clearly, we introduce two main metrics as an example. We consider the
main factors that affect the charging order are the remaining energy EResidual of the e-bike and the distance dMCV to
the MCV. The e-bike with the least remaining energy and the closest to the MCV will be first served. We use the skyline
query to reduce the number of target sets, and the elements in the target set are called interest data points. As shown in
Figure 4, the target set is {a, i, k}, where node a has the least remaining energy, and the distance from node k to MCV is
the closest. Node i has neither the shortest distance nor the least remaining energy, but the residual energy of node i is
lower than k and the distance to the MCV is close to a. Thus, node i is not dominated by node a and node k. The
remaining other data points will be dominated by the target set {a, i, k}, which means that the data points, whether
the remaining energy or the distance, are greater than one or more elements in the interest data points.

The linear skyline query is to further narrow the scope of the target set, which means that under all linear combina-
tions, the metrics of the e-bike in the target set must be optimal. Formally, there are R possible charging orders in the
target set. The Rpossible charging orders can be represented by R cost functions. In the cost function, c1, c2, … , ct are
the t-tuples of the metric, and t is the metric that affects the charging order. In this paper, we consider the frequency of
use, the remaining energy, and the distance to the MCV as the main indicators affecting the charging order of the
e-bike, that is, t¼ 3. For order A and order B in a feasible charging sequence P, the cost use vector of order A can be
represented by [c1(A), c2(A), c3(3)]

T and the cost use vector of order B can be represented by [c1(B), c2(B), c3(B)]
T.

FIGURE 4 Skyline query example illustration
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The charging order A dominates the charging order B if and only if 91≤ i≤ 3 : ci(A) < ci(B) and ∄1≤ i≤ 3 : ciðAÞ> ciðBÞ.
The result for the skyline query is a subset of all the e-bike sets P that needs to be charged, and the subset is
PC ¼fx �Pj∄y� P : x < yg. The shared e-bike charging order determination algorithm occurs when the MCV completes
the charging service for the current e-bike and the e-bikes have updated the data (remaining energy, distance to the
MCV, and the frequency of use).

6 | MCV CHARGING SCHEDULABILITY CONDITIONS

Whether the MCV starting mechanism is based on the adaptive task buffer pool or the dual threshold, the MCV imme-
diately starts to service the e-bike when the conditions of the starting mechanism are met. The main energy consump-
tion of MCV is mobile energy consumption and charging energy consumption, in which mobile energy consumption is
much larger than charging energy consumption. After the MCV performs the charging task, it needs to ensure that the
MCV can smoothly return to the service station SS for its own energy supplement. Therefore, when the e-bike Ni is
determined as the next service e-bike, it is necessary to determine whether the remaining energy of the MCV after the
service of the e-bike Ni can ensure that the MCV returns to the service station SS smoothly.

In the actual urban scene, the e-bikes of adjacent charging order are not directly reachable due to the presence of
obstacles. When MCV chooses a moving path, it faces a large search space. In this paper, we use A-star algorithm to
solve this path search problem, which can reduce the complexity of search space and find the shortest distance between
two points in the obstacle space. A-star algorithm is very suitable for large-scale urban traffic path search, which com-
bines the advantages of Dijkstra algorithm and BFS search algorithm to improve the flexibility of path search. When
the A-star algorithm is applied to the path search, the entire search space can be divided by a square, a triangle, and a
hexagon. For convenience, we consider gridding the entire search space, using a single square grid as the basic unit of
pathfinding. By setting the cost function to describe the distance or difficulty of the moving path, the obstacle can be
regarded as a basic unit of several pathfinding that cannot pass. The goal of the A-star algorithm is to find the least
costly path in the obstacle space. In this paper, we consider designing the MCV moving path with the diagonal distance
as a cost function.

The shared e-bike can still be used after sending the charging request. The charging request is sent only to inform
the service station that there is not much energy left. Before the MCV determines its service, its position is still in a
dynamic state. This feature makes it impossible to use the A-star algorithm directly in the obstacle space because the
precondition for the A-star algorithm to find the best path between two points in the obstacle space is the known
starting point and the ending point. However, for the dynamically changing e-bike, it is impossible to know exactly
where the destination is. Therefore, we introduce the concept of single-serving time for e-bike, which is defined as the
sum of the time when the MCV moves to the next charging e-bike and the charging duration for the e-bike. Through
the initial position, moving speed, rotation direction, and single running time of the e-bike, the position of the e-bike
and the distance to the MCV can be obtained.

Since the MCV has limited energy, it is necessary to ensure that the MCV can return to the service station for energy
supplementation before the energy is exhausted. Therefore, it is necessary to determine whether the MCV can smoothly
return to the service station after determining the next service e-bike and the best path to move. Assuming that there
are n charging tasks in the task buffer pool, the MCV charging period T is as shown in Equation (9),

T¼ tnþ τnþdn,1
vM

þTstay, ð9Þ

where Tstay refers to the length of time that the MCV returns to the service station for energy replenishment and waits
for the next scheduling. vM is the moving rate of the MCV, tn is the time when the MCV reaches the nth e-bike, and τn
is the service time for the nth e-bike. dn, 1 is the path length for MCV from the last served e-bike to the service station.
The time when the MCV reaches the e-bike Ni is shown in Equation (10),

ti ¼ ti�1þ τi�1þdi�1,i

vM
2≤ i≤N: ð10Þ

Use Equations (9) and (10) to generalize to the entire charging cycle T as shown in Equation (11),
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T¼
Pn

i¼1di,iþ1þdn,1
vM

þ
Xn

i¼1
τiþTstay: ð11Þ

In order to ensure the normal operation of the e-bike, it should be ensured that the remaining energy of the e-bike
will not become zero before being charged. We consider from the worst case; that is, the e-bike Ni to be charged is
always used and the remaining energy continues to drop. As shown in Equation (12), as long as the remaining energy
does not become zero, in this case, the normal operation of e-bike Ni can be ensured,

ET �pi� ti >0, ð12Þ

where ET is the energy threshold for the charging request and pi is the mobile energy consumption of the e-bike.
The e-bike does not consume energy during the charging process. The energy change of the e-bike during the charging
process is as shown in Equation (13),

ESEB ¼ET � ti�piþ τi�qc�η, ð13Þ

where ESEB is the total capacity of the e-bike, qc is the charging rate, and η is the energy receiving efficiency. In order to
ensure the fairness of charging, the shared e-bike is only serviced once during each round of charging. As shown in
Equation (14), it is necessary to ensure that the remaining energy of the e-bike will not reach ET until the next round of
charging begins,

ESEB�pi�ðT� ti� τiÞ>ET : ð14Þ

Substituting ESEB ¼ET � ti�piþ τi�qc�η into Equation (14) can obtain Equation (15),

τi�qc�η> pi�ðT� τiÞ: ð15Þ

Equation (16) can be obtained by generalizing Equation (13) to the entire charge cycle,

Xn

i¼1
τi�qc�η> psum�

Xn

i¼1
ðT� τiÞ, ð16Þ

where psum is the total energy consumption rate. The entire charging cycle includes the MCV travel time and charging
time. As shown in Equation (17), the time that the MCV is used for movement is greater than the duration of the charg-
ing service,

Xn

i¼1
τi <

Xn

i¼1
ðT� τiÞ: ð17Þ

Equation (18) can be obtained by combining Equations (16) and (17), which can be ensured that the e-bike will not
deplete energy before being serviced,

qc�η> psum: ð18Þ

In addition, it is necessary to ensure that the MCV has sufficient energy to return to the service station. As shown in
Equation (19), the total energy of MCV cannot be less than the sum of the charging energy and the path moving
energy,

EM ≥ psum� D�qc
vM �ðqc�η�psumÞ

þ D
vM

�qM , ð19Þ

where D is the length of the entire loop and qM is the mobile energy consumption of the MCV.
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In summary, the MCV path schedulability condition needs to satisfy Equations (18) and (19). If the path
schedulability condition is met, the MCV can determine its service.

7 | SELECTIVE INSERTION ALGORITHM FOR SHARED E-BIKE

Due to the regional differences in the frequency of using shared e-bike, the high-frequency use of e-bike appears in
some areas, such as schools and office areas. There may be a special case in the real scene. The MCV receives a charging
request along the way, while MCV moves to the next charging e-bike. The location where the charging request is issued
is close to the target service e-bike. The insertion of such e-bike that needs to be charged into the charging sequence
has little effect on the target service e-bike. For this special case, we consider adjusting the charging ordering according
to the geographical location of the shared e-bike.

Specifically, as shown in Figure 5A, when the MCV selects the e-bike Nj as the target service e-bike, it receives the
ALERT message from the e-bike Ni on the way to Nj, which indicates that Ni also needs to charge urgently. During the
MCV operation, the energy consumption of the MCV during operation is mainly concentrated on the mobile energy
consumption and the charging energy consumption. In addition, the charging energy consumption is much smaller
than the mobile energy consumption. The feasible path from MCV to Ni is mainly thought when considering whether
Ni can be served before Nj. The distance from the position of MCV (i.e., DMCV) to the target service e-bike Nj can be
obtained by Equation (20). As shown in Figure 5B, when the angle between the two sides is within a certain range, the
cosine value is approximately negative 1 based on the cosine theorem, cosx � ½�1,1�. In this case, Equation (20) can be
transformed into Equation (21) and then reduced to Equation (22) according to the square sum formula. Therefore, we
set the offset angle threshold γ. If ∠NiDMCVNj satisfies the threshold γ, the MCV will serve the e-bike Ni first and then
serve the original target charging e-bike Nj. The energy consumption of MCV is similar to the energy consumed directly
by the target e-bike Nj service. The offset angle threshold γ is the same as the cosine of the complementary angle, that
is, cosγ¼ cosð2π� γÞ. In this paper, we consider that when the cosine of the offset angle threshold γ is approximately
negative 1, which means the lower limit of γ is 90� and the upper limit of γ is 270�. In this case, the e-bike Ni can be
inserted into the MCV service queue.

dDMCVNj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2DMCVNi

þd2NiNj
�2dDMCVNidNiNicosγ

q
, ð20Þ

dDMCVNj ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2DMCVNi

þd2NiNj
þ2dDMCVNidNiNi

q
, ð21Þ

dDMCVNj ¼ dDMCVNi þdNiNj , ð22Þ

FIGURE 5 E-bike selection insertion algorithm position diagram
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where dDMCVNj is the distance from the MCV location to the target service e-bike Nj. dDMCVNi is the distance from the
MCV location to the insertion service e-bike Ni, and dNiNj is the distance from the insertion service e-bike Ni to the tar-
get service e-bike Nj.

8 | EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS

We use MATLAB and Python to implement the charging scheduling scheme in this paper. It is considered to randomly
generate several nodes and 20 square obstacles with a side length of 10 m in a 500 � 500 m square network area to
describe shared e-bikes and buildings in the actual scene. Each shared e-bike moves in the network at the same rate. In
the initial case, all e-bikes are rotated counterclockwise by an integral multiple of 30� in the positive direction of the
x axis as the moving direction. During the movement, if the e-bike encounters an obstacle, it will avoid the obstacle by
superimposing the 30� direction angle counterclockwise. In order to simulate the different frequencies used between
different e-bikes, we set the mobile energy consumption of e-bike to a random value between 0.25 and 0.8 J/s. Once the
MCV determines the next e-bike to be serviced, it will send CONFIRM message to the e-bike. At the same time, the e-
bike stops moving and waits for the MCV service. Otherwise, the e-bike is being used by the user or waiting to be used.
Table 2 shows the experimental specific parameter settings.

8.1 | EL optimization based on dual-threshold MCV starting mechanism

The warning threshold EL of the e-bike can be obtained by numerical simulation. As shown in Figure 6, we set the
value of ET to a fixed value of 225 J, and EL varies between [0, 220]. AECR increases with the increase of EL because
MCV waits for a longer time to receive more charging requests when EL � ET. The MCV starts to perform the charg-
ing task only when the remaining energy of the motorcycle reaches the EL. For more charging tasks, the resource uti-
lization of the MCV and the AECR of the e-bike are improved. In addition, the MCV waits for more charging
requests, which causes the charging waiting time to be longer and increases the charging delay. Therefore, the AFP
decreases as the EL increases. In summary, as the value of EL gradually increases and approaches the value of ET, the
number of charging requests collected by the MCV gradually decreases and the MCV waits for less time to start
immediately after receiving the first charging request, which can reduce the value of AFP. Moreover, MCV has fewer
e-bikes to serve after departure, which means more e-bikes work normally in the network. Thus, the value of AECR
increases.

Table 3 lists the values of the best EL and its corresponding w obtained under the number of e-bikes. The value of
EL decreases as the number of e-bikes increases because the MCV needs to collect more charging requests from the e-
bike to ensure that the optimal objective function value is achieved when the number of e-bikes increases. Thus, it
needs to reduce the value of EL to ensure that the number of charging requests is sufficient.

TABLE 2 Parameter settings

Parameter symbol Value

N 40–120

ESEB 500 J

ET 225 J

vM 5 m/s

vSEB 3 m/s

qM 30 J/s

qc 5 J/s

Bminthr 4

η 0.5
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8.2 | The impact of the shared e-bike number N

In this paper, the charging scheduling scheme under the adaptive task buffer pool of the MCV is called CSDC-OS1 and
the charging scheduling scheme under the dual threshold is called CSDC-OS2. In order to study the influence of differ-
ent e-bike numbers on the charging performance of the MCV under the CSDC-OS scheme, we compare the MCV mov-
ing duration and charging duration under different starting mechanisms. As shown in Figure 7, the moving time of the
MCV increases as the number of e-bikes increases because an increase in the number of e-bikes will increase the MCV
workload, thereby increasing the path movement time. In addition, it can be seen that the movement time of the
MCV under the CSDC-OS1 is much larger than that of the CSDC-OS2. The MCV serves for e-bikes in the task buffer
pool each time under the CSDC-OS1. Then, the MCV returns to the service station and waits for the adaptive buffer
pool to be full again after the service is completed. The size of the adaptive task buffer pool is very small compared to
the number of e-bikes, which also results in fewer charging services per round under CSDC-OS1 compared to CSDC-
OS2. After the task buffer pool is quickly full, the MCV starts to perform the charging task again, increasing the length
of the MCV moving path.

As shown in Figure 8, the charging time of the MCV increases as the number of e-bikes increases because the
increase in the number of e-bikes will increase the number of charging requests. Regardless of the number of e-bikes,
CSDC-OS2 has a higher charging time than CSDC-OS1, which is because the CSDC-OS2 starts according to the e-bike
energy directly. Once the ALERT message is received, the MCV will start. CSDC-OS2 does not consider the size of the
task buffer pool. The received charging requests can be placed in the task buffer pool, so that the number of e-bikes
served by MCV in each round of charging is more than CSDC-OS1. Thus, the MCV charging time is higher than CSDC-
OS1 under the CSDC-OS2.

FIGURE 6 The effect of EL change value on AECR and AFP

TABLE 3 The best EL value for different numbers of e-bikes

Number of e-bikes w EL

40 73.6 101.87 J

60 86.1 96.18 J

80 70.1 78.03 J

100 68 63.54 J

120 74 65.21 J
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8.3 | Comparative analysis of MCV throughput

The MCV throughput is defined as the number of e-bikes that are successfully charged at different times as the simula-
tion time changes. The higher the MCV charging throughput means that the less time the MCV is used for movement
at the current moment and the higher the charging efficiency. As shown in Figure 9, it can be seen that under the
CSDC-OS scheme, the MCV throughput increases with time and the throughput of the CSDC-OS2 is greater than that
of the CSDC-OS1. This is because the number of e-bikes that are serviced by MCV in each charging round under
CSDC-OS1 is determined by the size of the adaptive task buffer pool and the number of e-bikes that satisfy the condi-
tions for insertion. However, the CSDC-OS2 does not consider the size of the task buffer pool. Under CSDC-OS2, the

FIGURE 7 MCV movement time under different numbers of e-bikes

FIGURE 8 MCV charging time under different numbers of e-bikes
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MCV starts to perform charging task when the ALERT message is received. The charging request can still be received
during the MCV service as long as the charging schedulability condition is met and the MCV can serve it. In CSDC-
OS2, the number of e-bikes that the MCV departs for each round is determined by the number of received charging
requests, which is greater than the number of services served in CSDC-OS1. Therefore, the throughput of CSDC-OS2 is
greater than the throughput in CSDC-OS1.

8.4 | Impact analysis of obstacles

Due to the complex operating environment of the shared e-bikes, the presence of obstacles not only affects the move-
ment of the e-bikes in the network but also affects the charging path of the MCV. As shown in Figure 10, the Euclidean
path length is the path length calculated according to the Euclidean distance, which means the straight-line distance
between the actual moving path is the actual moving path length of the MCV in the network scene. As the number of
obstacles increases, the actual moving path length and the Euclidean path length increase. Due to the presence of obsta-
cles, the actual moving path length of the MCV is greater than the Euclidean path length. When the number of
obstacles is zero, the Euclidean path length is not equal to the actual path length because we divide the two-
dimensional network space into a grid with a side length of 1 m when using the A-star algorithm to determine the
MCV moving path. The MCV moves along the diagonal or side length of the mesh, so the actual moving path length of
the MCV is also greater than the Euclidean path length when there is no obstacle.

8.5 | Comparative analysis of MCV charging efficiency

Charging efficiency is one of the important indicators to measure the performance of the charging scheduling algo-
rithm. In this paper, we define it as the ratio of the energy that the MCV uses to replenish the energy to the e-bike and
the total energy spent completing the charging schedule during the entire charging schedule. The total energy spent by
the MCV in completing the charging schedule is the sum of the energy consumed by the charging and the energy con-
sumed by the movement. The higher charging efficiency means that the MCV spends more energy on energy replenish-
ment and the performance of the entire charging system is better. We compare CSDC-OS with NJNP,24 TADP,25 and
RCSS.36 The NJNP charging scheme means that the MCV preferentially selects the space closest to its nearest node for

FIGURE 9 Comparison of throughput with simulation time
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service. The TADP charging scheme not only considers the spatial characteristics of the node distribution but also con-
siders the residual energy of the node to ensure that the MCV preferentially selects the node with less residual energy
and closer to the MCV. The RCSS charging scheme comprehensively considers the distance from the node to the MCV,
the remaining energy, and the energy consumption rate of the node to ensure that the MCV preferentially serves each
node with a short distance to the MCV, less residual energy, and a larger energy consumption rate.

As shown in Figure 11, it can be seen that the CSDC-OS scheme is higher in charging efficiency than the other three
charging schemes. This is because the CSDC-OS fully considers the number of charging requests in the current network
and the energy consumption of the e-bike and dynamically adjusts the size of the task buffer pool and the value of EL.
In addition, CSDC-OS introduces e-bike selective insertion algorithm to ensure that the MCV can service more e-bikes
during each round of charging. When determining the charging order, the CSDC-OS fully considers the frequency of
use, the remaining energy, and the distance to the MCV and then performs a combination optimization to determine
the charging order by the linear skyline query method. Compared with the single influencing factors, this method is
more suitable for the complicated operating environment of the e-bike, thereby increasing the number of services pro-
vided for e-bikes and reducing the movement of MCV.

8.6 | Comparative analysis of average response duration

The average response duration is defined as the time interval from when the e-bike issues a charging request to the time
that the e-bike is responded by the MCV and divides by the number of e-bikes that are all requested to be charged,
which reflects the average waiting time of the e-bikes before being responded to. The smaller the average response
duration, the shorter the charging delay and the lower the probability that the e-bike will not work due to energy
exhaustion. The average response duration is mainly affected by the MCV starting mechanism. To demonstrate the per-
formance of the two departure mechanisms proposed by CSDC-OS, we consider comparing CSDC-OS1 with adaptive
task buffer pool to CSDC-OS1com (cf. CSDC-OS1 and CSDC-OS1com) based on fixed task buffer pool (set to 10). We
also consider the CSDC-OS2 with dual-energy threshold and the charging scheme based on fixed charging threshold
(set to 225 J) CSDC- OS2com (cf. CSDC-OS2 and CSDC-OS2com) for comparison. As shown in Figure 12, in the case of
small-scale e-bikes, t(CSDC-OS2) < t(CSDC-OS1) < t(CSDC-OS2com) < t(CSDC-OS1com) in terms of the average
response duration. The average response duration is longer than CSDC-OS2 for CSDC-OS1 and CSDC-OS1com because
the charging buffer is full for a long time and charging delay is long when the charging request is small. The adaptive

FIGURE 10 The path length is affected by the number of obstacles under CSDC-OS1
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task buffer pool adaptively adjusts the size of the task buffer pool according to the current number of unserved charging
requests. Compared with CSDC-OS1com, the buffer pool size is closer to the current number of e-bikes that need to be
charged. Therefore, t(CSDC-OS1) < t(CSDC-OS1com). Compared with CSDC-OS2com, CSDC-OS2 reduces the length
of time that MCV spends on mobile in the case of fewer charging requests, thus reducing the average response
duration.

As shown in Figure 13, under the large-scale number of e-bikes, the average response duration change trend under
different starting mechanisms is unchanged. However, the difference in the average response time of different depar-
ture mechanisms is gradually reduced. We divide it into two figures so that the difference is more clearly seen. In
Figure 13A, it can be seen that the average response duration difference between CSDC-OS1com and CSDC-OS1 is

FIGURE 11 Comparison of charging efficiency under different charging scheduling mechanisms

FIGURE 12 Comparison of average response duration of 40 e-bikes
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small and CSDC-OS1 is slightly better than CSDC-OS1com. This is because the number of e-bike increases leads to the
number of charging requests collected by the MCV increases. Whether the fixed task buffer pool or the adaptive task
buffer pool is easier to meet the MCV departure conditions, thus the gap is reduced. However, the starting mechanism
under the adaptive task buffer pool is more “sensitive” to the charging request. Its size automatically changes with the
number of currently unserved e-bikes, making their average response duration slightly better than CSDC-OS1com. In
Figure 13B, it can be seen that CSDC-OS2 is superior to CSDC-OS2com in average response duration, but the gap is
reduced compared to the small-scale number of e-bikes. This is because the number of charging requests collected by
the MCV has increased. In CSDC-OS2, the advantage of MCV to reduce the duration of movement is reduced, thereby
reducing the advantage of reducing the average response time.

As shown in Figure 14, we compare the performance differences between CSDC-OS, NJNP, TADP, and RCSS in
terms of charging response duration. It can be seen that both CSDC-OS1 and CSDC-OS2 are superior to the other three
charging scheduling methods. This is because NJNP, TADP, and RCSS all adopt the on-demand charging scheduling
method under the fixed task buffer pool. As shown in Figure 14A, CSDC-OS1 is more likely to satisfy the MCV starting
condition when the MCV receives less charging request, which is similar to the reason described above with reference
to Figures 12 and 13A. As shown in Figure 14B, as the simulation time increases, the average response duration of
CSDC-OS2 is better than the other three charging scheduling methods. The CSDC-OS2 is a charging scheme based on
the MCV dual-energy threshold starting mechanism. Compared with the charging scheme based on the fixed task

FIGURE 13 Comparison of the average response duration of 120 e-bikes

FIGURE 14 Comparison of the average response duration of 60 e-bikes
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buffer size, this starting mechanism based on the dual-energy threshold of the e-bike can directly reflect the energy
dynamic process of e-bikes and is more suitable for the complex operating environment, so the performance of CSDC-
OS2 is better.

In summary, CSDC-OS2 is superior to CSDC-OS1 in reducing the average response time. As the number of e-bikes
increases, the gap between CSDC-OS1 and CSDC-OS2 gradually narrows. This is because as the number of e-bikes-
increases, the number of charging requests received by the MCV increases and the CSDC-OS1 is easy to meet the MCV
starting mechanism. However, the dual-energy threshold-based starting mechanism can directly reflect the energy
change process of e-bikes, so CSDC-OS2 is slightly better than CSDC-OS1.

8.7 | Comparative analysis of average service duration

The average service duration is defined as the sum of the time when the MCV responds to the charging request and the
time when the MCV moves to serve the e-bikes at the current time, and then the sum value is divided by the number of
serviced e-bikes. The smaller the average service duration, the shorter the waiting time for the remaining unpaid e-
bikes and the lower the probability that other e-bikes will be unusable due to energy exhaustion. As shown in
Figure 15, the average service duration of CSDC-OS2 and CSDC-OS2com is gradually lower than CSDC-OS1 and
CSDC-OS1com with the simulation time under the small-scale number of e-bikes. In this case, the MCV collects fewer
charging requests, which will cause the fixed task buffer pool (CSDC-OS1com) and the adaptive task buffer pool
(CSDC-OS1) to be full for a long time. At the same simulation time, the more number of e-bike services, the shorter the
average response duration and the longer waiting time under CSDC-OS1 and CSDC-OS1com. Thus, the number is less
than CSDC-OS2, and the average service duration is higher than CSDC-OS2.

As shown in Figure 16, the average service duration change trend under different starting mechanisms is basically
unchanged compared with Figure 15. However, the CSDC-OS2 and CSDC-OS1 gradually lose their advantages in
reducing the average service duration. For CSDC-OS1, the MCV will receive a large number of charging requests when
the number of e-bikes increases. Compared with small-scale quantities, MCV can easily meet the starting mechanism
conditions and reduce the waiting time for e-bikes, which makes the number of service e-bikes gradually increase
under the same simulation time. For CSDC-OS2, the charging request is frequent as the number of e-bikes increases.
After the MCV starts, it can serve more e-bikes under the condition of ensuring charging schedulability, which gradu-
ally reduces average service duration with the simulation time.

FIGURE 15 Comparison of average service durations for 40 e-bikes
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8.8 | Comparative analysis of MCV moving path length

The length of the MCV moving path greatly affects the charging throughput. As shown in Figure 17, the length of the
MCV moving path under different charging mechanisms shows that the CSDC-OS scheme proposed in this paper sig-
nificantly reduces the MCV moving path length compared with NJNP, TADP, and RCSS. This is because NJNP, TADP,
and RCSS are more suitable for static node topology scenarios. On the one hand, CSDC-OS uses the selective insertion
algorithm to increase the service throughput without approximating the length of the MCV moving path. For NJNP,
TADP, and RCSS, these schemes need to determine the charging execution process based on the received charging

FIGURE 16 Comparison of average service durations for 120 e-bikes

FIGURE 17 The moving length of MCV under different charging mechanisms
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request and metrics, regardless of the situation in which the e-bike is inserted into the charging sequence priority ser-
vice. This problem leads to the MCV repeatedly fold back in the network, increasing the length of the moving path of
the MCV and wasting resources.

On the other hand, the CSDC-OS performs charging tasks according to the MCV starting mechanism of the
dynamic change of the e-bike. The MCV starts to perform charging tasks when the size of the adaptive task buffer pool
is full or the ALERT message is received. Under the condition that the charge schedulability is satisfied, the charging
request can be continuously processed. In the NJNP, TADP, and RCSS, the MCV starts to serve the e-bike after the fixed
task buffer pool is full. In NJNP, TADP, and RCSS, MCV returns to the service station to wait for the next round of ser-
vices only after completing a round of services. In a shared e-bike operating environment where charging requests are
frequent, there may be a new charging demand immediately after the MCV returns to the service station, which will
increase the MCV moving distance and reduce the MCV charging efficiency.

9 | CONCLUSIONS

In this paper, we propose a charging scheduling scheme named CSDC-OS based on the dynamic change of shared e-
bikes in obstacle space. Firstly, the MCV starting mechanism based on the dynamic change of e-bikes can effectively
balance the charging load in different environments and reduce charging delay and resource waste. Then, we make a
theoretic analysis on the charging schedulability conditions of MCVs to ensure that MCVs can successfully return to
the service station when they need to charge. The e-bike charging order determination algorithm based on linear sky-
line query can take various characteristics of shared e-bikes into account to select the best service order, which can
meet the charging demand and ensure the relative superiority of the overall solution. In addition, we study the condi-
tions of the e-bike pluggable charging queue in theory. The conclusions have important guiding significance for design-
ing MCV charging paths in complex environments. This makes the whole scheme closer to real-life scenarios and
improves the utilization of MCV resources. Experimental results show that compared with other algorithms, the CSDC-
OS improves response duration, MCV moving path length, and MCV charging efficiency by at least 8%, 40%, and 32%
on average, respectively.
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